Home > Agricultural Systems And Engineering (ASE)

Agricultural Systems And Engineering (ASE)

School of Environment Resources and Development | Department of Food, Agriculture, and Bioresources

In response to regional demand for professional training, two areas of specialization are offered: Agricultural Systems (AS) and Agricultural Engineering (AE). Students are trained to develop, adopt and disseminate knowledge and technologies that focus on the utilization and management of biological and agricultural systems and natural resources. Both AS and AE are in a productive alliance to complement each other within the wide spectrum of activities being undertaken at Agricultural Systems and Engineering (ASE). The ASE places its emphasis on sustainable agricultural development based on a holistic understanding of agronomic and biophysical production factors, from the perspective of producers and the effects of economic and social forces on agricultural enterprises. It highlights the application of biological sciences, engineering, socio-economic policies and programs, and support services to agriculture to increase the efficiency of agricultural production systems through availability and efficient use of inputs and management of natural resources.

Fieldwork and practical exercises have been inseparable from agricultural curricula at ASE. At ASE, we strive to comply with up-to-date methodologies and practices while making the best use of available resources. Through its professional linkages, formal or informal, with private and public sectors, ASE has been efficiently handling quality research activities.

FOCUS AREAS

  • Agricultural Systems Analysis
  • Agricultural Environments
  • Farm Production Engineering
  • Crop Eco-physiology and Modeling
  • Human Factors Engineering
  • Design and Testing of Agricultural Equipment
  • Crop Productivity Management
  • Livestock Productivity Management
  • Agricultural Systems
  • Farm Management Economics

PREFERRED BACKGROUND

  • Bachelor of Science, Biological Sciences
  • Bachelor of Agricultural Engineering
  • Bachelor of Science in Agricultural
  • Bachelor of Food Science and Technology
  • Bachelor of Food Technology
  • Bachelor of Science Biochemistry
  • Bachelor of Science Biotechnology

COURSE STRUCTURE

Course CodeCourseNumber of CreditsDescription/Course ObjectiveSemester
ED70.03Agricultural Systems Analysis3

Agricultural systems with biological components interacting with social and economic elements are extremely complex in nature. This course is designed to introduce concepts and techniques of systems analysis in an agricultural context and to illustrate the value of holistic approach through a number of quite different case studies. The manager or the administrator of such a system constantly looks forward to those techniques or methods, which helps him in planning, scheduling and controlling the activities in the system. The course should help students in identifying rational ways to improve the efficiency of agricultural systems.

Jan Sem
ED70.05Design and Testing of Agricultural Equipment3

This course is essential for practicing design engineers, providing combined theoretical and practical techniques as well as using computer graphic design that can improve the design efficiency and improvement in performance of agricultural equipment through standard testing and evaluation. Students will have their opportunities to use engineering principle, innovation and computer aided design to develop selected machine and tool that appropriated to agricultural production in most of Asia.

Aug Sem
ED70.07Agricultural Environments3

Increased food production depends on judicious use of the changes of the environment, how they could be modified by land-management practices, and their consequences for land productivity. available agro-ecological resources. Therefore, maintenance of vegetation, management of pests, conservation and efficient management of soil, water and nutrients, and plant-residue management are essential components of appropriate land utilization. The selection of suitable crops and cropping systems and their management require knowledge of the climatic, physical and biotic determinants of plant growth, both in terms of their magnitude and quality. This course provides information on short-term and long-term.

Aug Sem
ED70.08Crop Productivity Management3

Crop productivity depends on eco-physiological conditions and crop management practices, and their interactions. Crops respond differently to soil and climatic conditions. The selection of suitable crops and crop-management practices for given geographical locations is critical for the sustainability of crop productivity. Crop productivity management demands a systems approach. Hence, understanding soil and aerial environments and their variability, performance of crops under such changing conditions while maintaining soil parameters that govern soil productivity are important in the overall management of crop productivity. This course provides students with an understanding of soil productivity, the dynamics of soil processes and their relevance for biomass production of crops.

Aug Sem
ED70.09Livestock Production Systems3

The course offers a broad knowledge on livestock production systems which is a component of smallhold farming systems. The course develops an appreciation of livestock production systems and appreciation of livestock production systems in tropical countries, their classification, purposes, key components and processes and opportunities for improvement.

Aug Sem
ED70.11Farm Management Economics3

To provide a framework for better understanding the operation and management of farming system by the subsistence and semi-subsistence farm household in the Asian region by (i) incorporation of the use of tools of farm management analysis in solving local problems, (ii) demonstration of the relationship of farm management research to policy formulation and its impact on farmers’ income; and, (iii) development of the students’ awareness of farm problems in different countries.

Aug Sem
ED70.12Precision Agriculture3

Precision agriculture is a new concept in production. The course aims to educate students to deal with the comprehensive approach to crop production planning and implementation. It deals with three key elements: information and advanced agricultural technologies, and management.

Jan Sem
ED70.13Agricultural Soil Mechanics3

Knowledge of soil-water interactions is necessary to understand the crop water response to inputs. Similarly, to design the mechanisms or systems and tools used in for off-road conditions and in soils knowledge of tillage and traction theories is essential. This course is designed to upgrade students with related theories and practices.

Jan Sem
ED70.14Instrumentation and Measurement Techniques3

There is no substitute for careful experimentation as well as analyses techniques interpreting experimental data in many areas of basic research and applied product development. It is mandatory to use reliable instruments and to follow standard procedures to obtain accurate results in experimental research. This course is designed to give students a sufficient background of analytical and experimental considerations of various instruments and how to use them for the measurement of various parameters some of which they might come across in their thesis research and further professional activities.

Jan Sem
ED70.16Controlled Environment Agriculture3

Intensive agricultural production in controlled environment is becoming popular to overcome limitations of agricultural land and vagaries of nature, especially for the production of high value crops. The objective of the course is to provide understanding of the factors involved in greenhouse and nursery production of high value crops and plants.

Aug Sem
ED70.17Crop Eco-physiology and Modeling3

Crop responses to physical, biotic and management parameters determine the magnitude and quality of yield. Physiological parameters determine the net assimilation in a crop system. Knowledge of physical, biotic and management parameters and their interactions will help ensure optimal productivity of cropping systems. Computer simulation models of the soil/crop/atmosphere system help understand the processes determining crop responses to changes in system components, predict crop performance under different location-specific conditions, and guide management decisions.

Jan Sem
ED70.18Integrated Pest Management3

Integrated pest management (IPM) has become the conceptual basis for small- and large-scale plant protection programs, throughout Asia. This course emphasizes the ecological basis of pest management, the techniques and experiences involved and place them in context with socio-economic aspects. Therefore, this course will be offered to provide guidance on how to approach pest management in its entirety and how to practically handle a case using a learning cycle approach, experimentation based on science.

Jan Sem
ED70.19Land Husbandry3

Appropriate land management and the conservation of land resources are of high priority in sustainability-focused agricultural development. Land husbandry expands on traditional concepts of soil conservation. Soil-quality, productivity and conservation issues are addressed as integrated systems of land-resource management. Based on generic principles, characteristics of local agro-ecosystems and local technology, concepts for location-specific conservation systems are developed. For sustainable agricultural land use, it is essential that these concepts also encompass the socioeconomic and cultural dimensions of land management.

Jan Sem
ED70.21Agricultural Sector and Policy Analysis3

To develop an understanding of the role of agriculture sector on economic growth and its policy impact on food security, income distribution and environmental improvement which are essential for sustainable development.

Aug Sem
ED70.24Sustainable Agriculture: Production, Operations & Systems3

Agricultural production systems differ widely in terms of their operations and performance. Selection of appropriate production system is largely influenced by (and vice-versa, affects to) the region’s prevailing demography, environment, economy and infrastructure which eventually determines the status of poverty and food security. This course provides broad knowledge of the various farm production activities carried out by suitable agricultural machines and equipment – in the broader context of sustainability. Energy input-output analysis approach is followed to meter and compare different operations and systems on sustainability yardstick.

Aug Sem
ED70.25Sustainable Agriculture and Ecological Farming3

To impart knowledge on major and emerging issues and viewpoints confronting modern, high-input industrialized agriculture and society in relation to conservation of the soil, environment and sustainable development through effective management of agricultural resources.

Aug Sem
The following courses have been identified to be offered as ‘Minor’ in the ASE Academic Program:
Course codeCourse titleCreditSemester
ED70.07Agricultural Environments3(45-0)August
ED70.03Agricultural Systems Analysis3(45-0)August
ED70.08Crop Productivity Management3(45-0)August
ED80.10Statistical Methods for Research in Agribusiness3(45-0)January

PROGRAM BROCHURE

CONCERNED FACULTY